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Abstract :  The non-homogeneous quintic equation with five unknowns represented by the   diophantine equation  

52222 )19(4)(29)(5 zskyxxyyx n  is analyzed for its non-zero distinct integral solutions. Introducing the 

transformations vuyvux  ,  and employing the method factorization,three different patterns of non-trival distinct integer 

solutions to the quintic equation under consideration are obtained. A few interesting properties between the solutions and special 

numbers namely,Polygonal numbers,,Centered Pyramidal numbers , Thabith-ibn-kurrah number, Gnomic number, Jacobsthal Lucas 

number , Jacobsthal  number and five dimensional numbers  are exhibited. 
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NOTATIONS: 

                               nmt ,  
:    Polygonal number of rank n  with size m    

                                
m
nP  :    Pyramidal number of rank n  with size m  

                                 nj  
 :     Jacobsthal Lucas number of rank n  

                                  nJ
 
:     Jacobsthal  number of rank n  

                            nGNO
 
:     Gnomic number of rank n  

                                 nTk
 
:     Thabith-ibn-kurrah number of rank n  

                             nmCt ,  
 :    Centered Polygonal number of rank n  with size m    

                          30.,3 nCf  :    Centered Tricontagonal Pyramidal number of rank n                                                       

                               7,n,5F  :   Fifth Dimensional Figurate Heptagonal number of rank n   

                       ),( skGFn  :   Generalized  Fibonacci Sequences of rank n     

                      ),( skGLn  :   Generalized  Lucas Sequences of rank n  

 

________________________________________________________________________________________________________ 

 

I. INTRODUCTION 

       The theory of diophantine equations offers a rich variety of fascinating problems. In particular,quintic equations, homogeneous and non-

homogeneous have aroused the interest of numerous mathematicians since antiquity[1,2,9].For illustration, one may refer [3-5] for quintic 

equation with three unknowns ,[6] for quintic equation with four unknowns and  [7,8] for quintic equation with  five unknowns. This 

communication concerns with yet another interesting a non-homogeneous sextic equation with 5 unknowns given by

52222 )19(4)(29)(5 zskyxxyyx n for determining its infinitely many non-zero integer quintuples 

),,,,( twzyx  .Three different methods are illustrated. In mehod1,the solutions are obtained through the method of factorization. In 

mehod2,the binomial expansion is introduced to obtain the integral solutions. In method3,the integral solutions are expressed in terms of 

Generalized Fibonacci and Lucas sequences along with a few properties in terms of the above integer sequences.Also a few interesting 

properties among the values of yx, and z are presented.   

 

2. METHOD OF ANALYSIS 

The diophantine equation representing a non-homogeneous quitic equation with five unknowns is 

                        
52222 )19(4)(29)(5 zskyxxyyx n                             (1) 
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Introducing the linear transformations 

          
vuyvux  ,                                    (2) 

 in (1), it leads to  

                         
522222 )19(19)2( zskvu n                                                (3) 

The above equation (3) is solved through three different methods and thus, one obtains three distinct sets of solutions to (1) 

2.1:Method: 1  

Let                   
22 19baz                                                                                                   (4) 

Substituting (4) in (3) and using the method of  factorization,define 

                     
5)19()19()192( biasikviu n                                             (5) 
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Substituting the values of u  and v  in (2), the corresponding values of  yx,  and  z are  

represented by                          
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2.2:Method :2 

Using the binomial expansion of 
nsik )19(  in (5) and equating real and imaginary parts, we have                
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(7)                                                   

 In view of (2) and (7) the corresponding integer solution to (1) is obtained as                                  
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2.3:Method :3 

Taking 0n  and Uu  2 in (3), we have,                                                                                  

                                
522 19 zvU                                                                                 (8) 

Substituting (4) in (8), we get 

                              
52222 )19(19 bavU                                                                (9) 

 whose solution is given by 
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                                   )1805190( 4235
0 abbaaU   

                                    )3611905( 5324
0 bbabav   

Again taking 1n   in (3), we have, 

                                    
5222222 )19)(19(19 baskvU                                    (10) 

whose solution is represented by  
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The general form of integral solutions to (1) is given by 
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Thus, in view of (2), the values of nn yx ,  and z   as follows: 
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22 11baz   

Thus, in view of (2), the following  of integers nn yx ,  interms of  Generalized Lucas  and fiboanacci sequence
 
 satisfy (1) are as follows: 
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The above values of nn yx ,  satisfy the following recurrence relations respectively 
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2.3.1:Properties 
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3.  CONCLUSION 

To conclude, one may search for other pattern of solutions and their corresponding properties.  
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